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ABSTRACT

Little work has been done theoretically or empirically to obtain the value of a
statistical life (VSL) for children or the elderly.  This paper addresses both of
these issues by first presenting a theoretical model of how families value risk
and then examining family automobile purchases.  Automobile safety is
shown to be a family public good, where the marginal cost of purchasing and
operating a safer automobile is set equal to the usage-weighted sum of the
values of statistical life of family members.  We use data on automobile
purchases to estimate how much single car families of different composition
(in terms of children, adults and the retired) spend on safety to impute the
VSL of each age group.  We find that children are valued more highly than
some existing studies suggest.  The VSL of the elderly is consistent with the
discounted present value of life years approach.  These results come, in great
part, from an analysis of the fatal accident data that shows that fragility--the
susceptibility to death in an accident of fixed severity--increases with age.
Also, we show that an important factor for survival in two-vehicle accidents is
the relative weight of the vehicles involved.  The models of survival in fatal
accidents are used to estimate standardized risks of mortality in different
types of vehicles.  These standardized risks are then used in hedonic models of
the purchase price and fuel efficiency of a specified vehicle to determine the
capital costs and the operating cost of reducing the risk of mortality.
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Section 1. Introduction

Little work has been done either theoretically or empirically to value

morbidity and mortality either for children or retired adults (for exceptions

see Blomquist, et al., 1996, and Jenkins, et al. 1999).  This paper addresses both

of these issues by first presenting a theoretical model of how families value

risk and then examining family automobile purchases.  In particular, we show

that parents may value risks to their children’s lives and health (the model

assumes two altruistic parents) through Nash cooperative bargaining to

determine how much money to invest in the health and safety of their

children. To allow empirical estimation of values, automobile safety is then

shown to be a family public good, where the marginal cost of purchasing and

operating a safer automobile is set equal to the usage-weighted sum of the

values of statistical life (VSL) of family members.  We use data on automobile

purchases to estimate how much families with children spend on automobile

safety and how much families with retired members and no children spend on

safety, for comparison to families without children or retired members.  This

not only allows indirect estimation of an average value of a statistical life

(VSL) for each type of family, but also allows estimation of an average value of

a statistical life (VSL) for each age group: children, adults and seniors.
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Our research using secondary data is a preliminary effort to determine

the feasibility of collecting a national data set to allow direct estimation of

separate values for mortality and possibly morbidity for different family

members from choices made concerning both the type of vehicle and usage

pattern by family members.  A major limitation of the secondary data we use

here is that only the usage weighted average statistical values of life per family

member can be estimated for single car families.  We examine families with

different compositions to impute the VSL for different family members.

The paper is organized as follows: Section 2 presents a simplified

theoretical model of family automobile purchase decisions focusing on safety

and how safety values for each individual are determined in a family setting.

Section 3 addresses the problem of driver characteristics affecting estimates of

the inherent risk of fatality of different automobiles and develops a procedure

for identifying the driver independent level of risk.  Section 4 describes our

empirical work estimating a hedonic price function for automobiles showing a

negative correlation between risk of fatal accident and price and operating

costs as well as our estimates of average implied values of life for different

family groups.  Finally, we summarize our findings and implications for

future research in Section 5.
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Section 2. Theoretical Issues

How willingness to pay (WTP) for health and safety may vary with the

age of the person at risk is a very important policy question for which we have

little well-established empirical data. Cropper and Freeman (1991) address

this question with a life-cycle consumption-saving model that they apply with

a quantitative example to examine how WTP for a risk reduction in the

current time period can be theoretically expected to change over a person's

lifetime. This model is based on the premise that a person makes consumption

and saving decisions over time to maximize personal utility. Because this

model is based on the premise that utility is a function of consumption, the

authors note that, if there is additional utility derived from survival per se,

then the life-cycle model provides a lower bound estimate of WTP. The

quantitative example depends on assumptions regarding a lifetime pattern of

earnings, endowed wealth, the rate of individual time preference, and other

parameters of the model. These will all vary for different individuals, and

uncertainty exists empirically about population averages for many of these

factors. However, using reasonable values to calibrate the model is illustrative.

Cropper and Freeman note that if consumption is constrained by income early

in life, the model predicts that VSL increases with age until age 40 to 45, and

declines thereafter. Shepard and Zeckhauser (1982) also illustrate this point

with numerical examples for the life-cycle model. When they estimate the
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model with reasonably realistic parameters and assume no ability to borrow

against future earnings or to purchase insurance, they find a distinct hump in

the VSL function with a peak at around 40 years and dropping to about 50% of

the peak by 60 years. When they allow more ability to borrow against future

earnings and to purchase insurance, the function flattens and at 60 years drops

only to 72% of the VSL at age 40. However, the hump shape to the VSL over a

person's lifetime remains.

The conclusions reached by these theoretical analyses of the effect of

age on WTP for mortality risk reduction using the life-cycle model are

somewhat consistent with the empirical findings obtained by Jones-Lee et al.

(1985). However, the empirical findings show that WTP varies with age much

less than would be predicted by the life-cycle models. In this stated preference

study, respondents gave WTP estimates for reductions in highway accident

mortality risk and the answers showed a fairly flat hump-shaped relationship

between VSL and age, peaking at about age 40. Although the directions of the

changes in WTP with age are consistent with what the life-cycle models

predict, the magnitudes of the changes are smaller. The Jones-Lee et al. results

show that at age 65 the VSL is about 90% of the VSL of a 40-year-old person.

It is often suggested that WTP will be lower for the elderly than for the

average adult because expected remaining years of life are fewer. This

expectation is based on the presumption that WTP for one's own safety
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declines in proportion to the remaining life expectancy.  Some analysts have

suggested that effects of age on WTP might be introduced by dividing average

WTP per statistical life by average expected years of life remaining (either

discounted or not) to obtain WTP per year of life (Moore and Viscusi, 1988;

Miller, 1989; Harrison and Nichols, 1990). Such a calculation implies very

strong assumptions about the relationship between life expectancy and the

utility a person derives from life; namely, that utility is a linear function of life

expectancy and that the value of life year remains constant.

Determining appropriate WTP values for changes in mortality risks to

children poses some particular analytical challenges. Children are not the

economic decision makers whose preferences can be analyzed to determine an

efficient allocation of society's resources regarding their own health and

safety, so both revealed and stated preference approaches must rely on

parental decisions to show what WTP for children's health and safety might

be. Based on the expected relationship between WTP and expected life-years

lost, it may be reasonable to assume that reductions in risks to children are

valued equal to or greater than risks to adults.  Blomquist, et al. (1996) support

this view in their analysis of seat belt use for children.  On the other hand, the

life-cycle consumption-saving models show increasing WTP for risk

reductions between the ages of 20 and 40, reflecting the typical pattern of

increasing income and productivity during this stage of life. Extending this to
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children might suggest lower WTP for reducing risks to children, however,

this pushes beyond the theoretical constructs of the life-cycle model regarding

an individual as an economic decision maker.  The only theoretical model that

addresses these concerns, with respect to dependent children, has been

developed by Chestnut and Schulze (1998).  Their work treats the case of a

family with non-paternalistic altruistic parents who engage in Nash

cooperative bargaining to determine health and safety expenditures on their

children and the implied VSL.  We use this model as a starting point for our

analysis.1

Given the state of existing research, our first task is to develop a model

that can potentially explain the behavior of households with dependent

children.  This model is developed in the context of automobile safety to allow

empirical estimation of an appropriate family VSL, since the existing

theoretical literature only considers individuals rather than families, with the

exception of the work by Chestnut and Schulze mentioned above.  Our work

here paraphrases this earlier work and adds a hedonic market for automobile

safety.

                                                          
1 It should be pointed out that some interesting revealed preference empirical

approaches based on a household production function framework to analyze household
expenditure decisions as they relate to children's health have been attempted (Agee and
Crocker, 1996; Joyce et al. 1989). These analyses infer implicit WTP for changes in children's
health as revealed by expenditure decisions of the household. Limitations in available data
and analytical difficulties in properly specifying and verifying modeled relationships pose
challenges for this approach; however, its basis in actual household decisions and behavior is
an important strength. Estimates of WTP for changes in mortality risk for children are not
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We begin by considering the case of a single individual with no family

who may, or may not, survive for a single period.  The following notation will

be useful:

c = consumption,

w = wage income,

r = risk of a fatal automobile accident,

Π  = probability of survival without automobile fatality risk,

Π -r = probability of survival with automobile fatality risk,

H(Π ) = health expenditures (increasing in Π ),

P(r) = automobile price (decreasing in r), and

F(r) = total fuel consumption expenses

U(c) = strictly concave utility function.

Note: subscripts or primes denote derivatives where appropriate.

The individual must make two choices.  First, the baseline probability

of survival, Π , is chosen subject to the constraint that increasing Π  increases

health expenditures, H(Π ), consequently reducing both consumption, c, and

money available for purchasing a car, P.  Similarly, the individual chooses

how risky a car to drive, r, taking into account that lower r implies that both

the price of the car, P(r), and operating expenses, F(r), are greater.

Investments in health, Π , and automobile safety, reducing r, are chosen prior

                                                                                                                                                                      
directly available from these two studies, but similar approaches might be applied to obtain



9

to realizing whether or not the individual will survive.  The individual is

assumed to maximize expected utility,

(Π -r)U(c), (1)

where the death state provides no utility because the individual has no

family, subject to the budget constraint,

(Π -r)(w-c) - P(r) – F(r) - H(Π ) = 0. (2)

This budget constraint assumes that costless insurance (available for expected

value) is available both to cover the purchase price and operating costs of the

automobile, P + F, and initial health and other safety investments, H.  Most car

loans, in fact, carry life insurance for the amount of the loan, and life insurance

could presumably cover the costs of other health and safety investments.  The

optimal choice of Π  is then determined by

Hπ= VSL, (3)

and, the optimal choice of r is determined by

-(P’ + F’) = VSL, (4)

where,

VSL ≡  (U/Uc) + w – c. (5)

Equation (3) sets the marginal health cost of increasing the odds of

survival equal to the value of the individuals statistical life (VSL) while

equation (4) sets the marginal increase in cost for purchasing and operating a

                                                                                                                                                                      
such WTP estimates.
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safer car equal to the VSL as well.  The VSL is defined in (5) for the case of

perfect insurance markets and is equal to the monetized value of utility,

(U/Uc), which is lost in death, plus the excess of earnings over consumption.

The interpretation of this relationship is much clearer in the family setting that

we treat below, so we will defer discussion.

The model developed above can readily be extended to a family setting

by using the Nash cooperative bargaining between parents approach

employed by McElroy and Horney (1981).  Following our previous work

(Chestnut and Schulze, 1998), we modify the notation used above, again

considering a single car family (the case we analyze empirically), as follows:

n = the size of the family,

i = 1, 2,….,n denotes individual family members,

i = m = 1 denotes the mother,

i = f = 2 denotes the father,

i= k = 3, …..,n denotes  children,

ci = consumption of the ith family member,

wi = wage of family member i,

r= automobile fatality risk, the same for all family members,

Π i = probability of survival, excluding automobile fatality risk, of i,

H(Π 1,…….., Π n) = family health expenditures (increasing in Π i),

P(nr) = automobile price (decreasing in total family risk, nr),
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F(nr) = total fuel consumption expenses (decreasing in total family risk,

nr),

Uk (ck) = child’s utility function,

Ui( ci ;….,(Π k-r)Uk(ck),….) = parent’s utility function (i = m, f), and

Ei = bargaining threat point of expected utility in divorce (i = m, f).

The family must decide how much to allocate to each family member

for consumption, spending on the health of each (and in so doing select

survival probabilities), and on the safety level of the single automobile they

purchase for all.  Note that the demand for driving is inelastic in this model,

since the only driving choice is over the risk of the chosen automobile.  The

hedonic price function for the automobile is now taken as P(nr) so that the

total family risk level determines the price of the car where P’<0 so more

dangerous cars are cheaper.  All of the existing hedonic price analyses of

automobile safety use total fatalities per year for a vehicle model divided by

the total number of that model on the road as the risk variable.  Thus, the risk

measure is not divided by occupancy (n in this theoretical model).  It is, in fact,

plausible to suppose that it is more expensive to increase the safety for each of

four passengers than for one, so this assumption may be reasonable.  Also,

since heavier cars are unambiguously safer in collisions, fuel costs and other

operating expenses are positively related safety and negatively to family risk,

so these expenses are defined as F(nr) where F’<0.  Thus, rather than treating
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fuel economy as a hedonic characteristic in the hedonic price function for

automobiles, where it inevitably has the wrong sign, we treat fuel costs as an

expense which is also a function of the choice of the other attributes of the car.

The utility functions of both the father and mother are assumed to

depend not only on their own consumption, but also on the expected utilities

of each of their children.  The children’s utility is assumed to be solely a

function of their own consumption.

Investment in the safety and health of their children is a public good to

the parents, which is the subject of negotiation, as is the level of consumption

of each.  The Nash cooperative bargaining model assumes that the solution

maximizes the multiplication of the increase in the expected utility of the

outcome over the threat point expected utility in divorce for the mother and

the father.  The threat points are assumed, in models of the family, to be a

function of divorce laws, job opportunities, etc.  Thus, in the Nash cooperative

bargaining solution,

(Π m-r)Um(cm;..,(Π k-r)Uk(ck),..)-Em] [(Π f-r)Uf(cf;..,(Π k-r)Uk(ck),..)-Ef], (6)

is maximized with respect to ci, Π i , and r, subject to the budget constraint,

i =1

n

∑ (Π i -r) (wi - ci) - P(nr) - F(nr) - H(Π 1,…….., Π n) = 0.

(7)

The resulting conditions for allocating health expenditures and survival

probabilities take the form:
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Hi = Ui/Uic + wi - ci  ≡  VSLi           i = 1,………,n.

(8)

The remarkable fact is, that, in spite of the complicated structure of the

problem specified above, the implied VSLi for each family member shown in

(8) is identical in form to that for the single individual shown in (5) above.

The interpretation of the VSLi can be illustrated with the following examples.

Imagine that the mother is the sole breadwinner with a stay-at-home father.

In this case, assuming that the children are young, wi - ci <0 for the other

family members and wm – cm >0 for the mother.  Thus, if the mother were to

die, this would be a severe financial blow to the rest of the family and the

mother’s VSL would reflect this relative to the VSL of other family members.

For young children it is clear that wk – ck <0 in the short run.  However, in the

inter-temporal version of the model, wk – ck is replaced by its discounted

present value, which may be positive. Ui/Uic  depends solely on ci in the single

period model and on the lifetime consumption pattern in the full inter-

temporal model.  The important point is that the child’s consumption depends

in youth on the parents’ income and wealth.  Further, if parents find the value

of their child’s smile to be high enough, the child’s consumption will be

maintained, by them, at a high level, leading to a high VSL.  A young child’s

utility may also be large in the parent’s view from relatively small levels of

financial consumption, also leading to a high VSL.  These arguments suggest



14

that the VSL of children is a purely empirical question and depends not only

on their own life cycle wealth but also on their family’s wealth and the beliefs

of the parents regarding their children’s utility.

Finally, the choice of automobile risk, r, is determined by

-n(P’ + F’) = 
i =1

n

∑ VSLi. (9)

Thus, the safety of the shared family vehicle is determined by a public good

condition which sets the marginal cost of obtaining a safer vehicle for each

individual equal to the sum of the VSLs of individual family members.  Thus

the marginal cost of a safer vehicle is the slope of  the hedonic price function

for automobile safety, -P’, plus the marginal fuel cost penalty, -F’, which, by

(7), is set equal to the average VSL for the family, 
i =1

n

∑ VSLi /n, to determine

the choice of automobile risk, r.

Thus, if we examine P’ + F’ for different households with a single car,

we can obtain estimates of the average value of life for those households.

However, the average is a weighted average where the weights are

determined by each family member’s use of the vehicle.
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Section 3. Statistical Model of Automobile Fatalities

The basic data on fatalities in automobile accidents provide a census of

accidents with at least one fatality.  Hence, the probability of an accident being

included in the data set depends on the number of individuals involved in an

accident as well as the characteristics of the vehicles and driving behavior (e.g.

the use of seat belts).  This can be illustrated by the following examples for a

one-vehicle and a two-vehicle accident.  For a one-vehicle accident, assume

that the driver and one passenger have the same probability of survival P* =

P{survival} = .5.  The four possible events are illustrated below, and in this

example, each event has the same probability of occurring of 0.52 = .25.

Passenger

Fatality Survives

Driver Fatality

Survives

Accidents in which both the driver and the passenger survive (shaded) are not

included in the data set.  Hence, the probability of either the driver or the

passenger surviving in an accident with a fatality corresponds to the

probability of one of three possible events with a probability of P = P{survival

| at least one fatality} = 0.25 / (1 - 0.25) = 0.33.  The observed probability of
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survival in the data set, P, is much lower than the unconditional probability,

P*.  The observed probabilities of survival, P, are 0, 0.33, 0.43 and 0.47 for 1, 2,

3 and 4 occupants, respectively, and the values of P increase and get closer to

P* as the number of occupants increases.

In the one-vehicle accident with two occupants and P* = 0.5, the

expected number of fatalities is one (the modal type, corresponding to 91% of

one-vehicle accidents in the data set).  In a two-vehicle accident with two

occupants in each vehicle, the same expected number of fatalities would occur

if P* = 0.25 (for multiple-vehicle accidents, 54% of vehicles have no fatalities,

and 40% have one fatality).  The probability of an accident having at least one

fatality, and being in the data set, is (1 - 0.754) = 0.68.  There are 16 possible

permutations of survival / fatality for the four individuals and 15 of them are

in the data set.  For any selected individual, 7 of the 15 observed events

correspond to surviving with a probability P = 0.63.   While this is lower than

the unconditional probability of survival P* = 0.75, it is much larger than the

corresponding probability for the one-vehicle accident P = 0.33.  Setting the

severity of the two types of accident at the same level (E [number of fatalities]

= 1) makes the probability of a specific individual surviving in a fatal accident

almost twice as large in the two-vehicle accident as in the one-vehicle accident.

The reason is simple, for any unconditional probability of survival P*, the

expected number of fatalities is P* × number of individuals in the accident.
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Since the data set includes all accidents in which at least one fatality occurs, a

fatality is more likely to occur if more people are involved.

In reality, the unconditional probabilities of survival for individuals

differ by individual characteristics such as age, whether or not a seat belt was

used and the location of the seat in a vehicle.  In addition, these probabilities

differ by the type of vehicle, and for two-vehicle accidents by the relative size

and type of the other vehicle.  For an individual i riding in vehicle j, the

unconditional probability of survival in a two-vehicle accident, for example,

can be written:

( ) ( )P f x v v f zij i i i ij
* , ,= =1 2

where xi are the characteristics of individual i

vi1 are the characteristics of individual i's vehicle (j = 1)

vi2 are the characteristics of the other vehicle (j = 2)

zij is the vector of all explanatory variables

The probability of observing at least one fatality in the accident is

( )∏ ∏= =
− 2

1j

n

1i
*
ij

j P1

where nj is the number of individuals in vehicle j.

If ( )P f zij ij
* =  is specified as a logistic function, then it can be written:

P
e

eij

z

z

ij

ij

* =
+

′

′

β

β1
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where β is a vector of unknown parameters that are the same for all

individuals and vehicles.  Using this form, it would be possible to recover the

unconditional probabilities of survival using the available data on accidents

with at least one fatality.  In the simplest case with one individual in each

vehicle, for example, the probability of observing two fatalities in the data set

would be:

1
1 11 12+ +′ ′e ez zβ β

and the unconditional probability of two fatalities would be:

1
1 + e ′ z 11β + e ′ z 12 β + e ′ z 11 + ′ z 12( )β

The unconditional probability of the individual in vehicle 1 surviving would

be:

P11
* = e ′ z 11β + e ′ z 11 + ′ z 12( )β

1 + e ′ z 11β + e ′ z 12β + e ′ z 11 + ′ z 12( )β = e ′ z 11 β

1 + e ′ z 11β

An equivalent expression for P*12 can be derived in exactly the same

way.  Since β could be estimated from the available data on fatal accidents, the

unconditional probabilities of survival could be calculated.

The parameters in β can be estimated by maximum likelihood.

estimation.  The likelihood function for the probability of survival in two-

vehicle accidents, for example, can be specified as:
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where K = 1, …, m, number of accidents;

njk is the number of individuals in vehicle j, accident k;

Yijk = 1 if individual i survived, else 0.

The basic structure of the model of the risk of having fatality in an

accident is to distinguish between one-vehicle, two-vehicle and multiple-

vehicle accidents.  The expectation is that the characteristics of drivers

contribute more to the probability of having a one-vehicle accident than to a

two- or multiple-vehicle accident.  On the other hand, vehicle characteristics,

particularly the weight relative to the weight of the other vehicle, will affect

the survival rate in two-vehicle accidents but may be less important for one-

vehicle accidents.  In addition, the earlier discussion of why survival rates are

likely to differ systematically between one-vehicle and two-vehicle accidents

provides another reason for modeling one-vehicle and two-vehicle accidents

separately.  The justification for separating multiple-vehicle accidents from

two-vehicle accidents is that it is impossible to identify the "other" vehicle

from the data for multiple-vehicle accidents.

If r is the overall fatality rate, then the model's components can be

written as follows:

{ }( ) { }( )[ ]MPVmPPVPPVPr m *)1}({*12*11 21 −+−+−= ,
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where r is the annual fatality rate per occupant;

P{V1} is the probability of having a one-vehicle accident per 10,000

miles;

P{V2} is the probability of having a two-vehicle accident per 10,000

miles;

P{Vm} is the probability of having a multiple (three or more) vehicle

accident per 10,000 miles;

P1* is the probability of surviving in a one-vehicle accident;

P2* is the probability of surviving in a two-vehicle accident;

P3* is the probability of surviving in a multiple-vehicle (three or more)

accident;

M is the average annual mileage traveled (13,989 miles from the NPTS).

The units for r, { }P V1 , { }P V 2 and { }VmP are all standardized to measure the

probability of having a fatal accident per 1000 vehicles.

Conceptually, all six components of the observed values of r may be

functions of the characteristics of the driver (and the passengers) and the

vehicle driven (and the other vehicle for two-vehicle accidents).  For

computing a hedonic price index, the characteristics of an average driver and

passenger are used to predict r for different types of vehicle (make, model and

year), and each type of vehicle is assumed to have an accident with a typical

other vehicle in a two-vehicle accident.  Hence, the effects of drivers'
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characteristics are removed prior to estimating the hedonic price equation.

The effect of standardizing the other vehicle in a two-vehicle accident is

relatively small because the observed combinations of vehicles in two-vehicle

accidents are approximately random.  Standardizing drivers' characteristics,

however, matters a lot for the probabilities of being in a fatal accident.  It is the

primary reason for the difference in results for the value of a statistical life

compared to a conventional model in which drivers' characteristics are added

as additional regressors in the hedonic price equation.

The structure of the equations for the six components of r is described

in an appendix which is available from the authors upon request.    In

summary form, they can be written as follows:

{ } ( )P V g V D1 1 1 1= ,

{ } ( )P V g V D2 2 1 1= ,

{ } ( )11  , DVgVmP m=

( )111
*

1  , OVfP =

( )1212
*

2  ,  , OVVfP =

( )11
*  , OVfP mm =
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where V1 are the characteristics of a selected vehicle.

D1 are the average driver's characteristics for the selected vehicle

and include factors such as the use of seat belts and whether alcohol

was a factor.

O1 are the characteristics of the occupants of the selected vehicle,

including the driver.

V2 are the characteristics of the other vehicle, its weight relative to

the weight of the selected vehicle being the most important.

Since all six dependent variables are probabilities, appropriate

statistical models for limited dependent variables are used.  P1*, P2* are

specified as logistic functions and estimated by maximum likelihood in

GAUSS.  For Pm*, we assume the unconditional probability Pm* is same as the

observed probability Pm, and Pm is specified as a regular logit model and

estimated in SAS. { }P V1 , { }P V 2 and }{VmP  are determined by a censored

regression model to allow for a probability mass at zero (see the appendix for

more explanation).   (Appendices are available from the authors upon

request.)  Note that Pm* is determined by the characteristics of the own-vehicle

only because it is not possible to identify the “other” vehicle in a multiple-car

accident.

The complete econometric analysis consists of the following five steps:
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Step 1.   Augment the FARS data on observed fatal accidents with additional

characteristics about the vehicles (e.g. weight and safety features), and use

these data to estimate equations for the unconditional probabilities of survival

in one-vehicle, two-vehicle and multiple-vehicle accidents (P1*, P2* and Pm*).

Derive the estimated numbers of serious accidents (including accidents with

no fatalities) for one-vehicle, two-vehicle and multiple-vehicle accidents.

Step 2.    Calculate the average drivers' characteristics in fatal accidents from

the FARS data by make, model and year of the vehicle driven, and combine

with survey data on the composition of the fleet of vehicles.  Use these data to

estimate equations for the probabilities of having one-vehicle, two-vehicle and

multiple-vehicle accidents by the make, model and year of vehicle (P{V1},

P{V2} and P{Vm}).

Step 3.    Use the average drivers' characteristics from the FARS data, and the

average other vehicle in two-vehicle accidents, to standardize the

unconditional probability of a driver and/or passenger being killed in a fatal

accident by make, model and year of the vehicle.

Step 4.   Combine the standardized risk of a fatal accident (assuming two

occupants) with the data on vehicle characteristics by make, model and year

and use these data to estimate hedonic indices of the purchase price and
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standardized risk and price index the fuel efficiency for other vehicle

characteristics.

Step 5.   Select a subset of the survey data on vehicle ownership

corresponding to families that own only one vehicle.  Further subdivide these

observations into 1) families with children, 2) families with no children and no

seniors, and 3) families with seniors.  Calculate the average value of a

statistical life for each of the three types of family using the observed make,

model and year of the vehicle owned by each family.  Two occupants are

specified for each vehicle, and for the second type of family, one occupant is a

young kid.  Then, assuming the VSLs of the adults in the first and second

types of family are the same, the average VSL of children can be derived by

decomposing the average VSL for each member of the second type of family.

The empirical results for Steps 4 and 5 are presented in the following

section, and additional information about Steps 1-3 are given in an appendix

which available from the authors upon request.

Section 4. The Empirical Results

4.1 The Hedonic Price and Fuel Efficiency Models

The econometric model used for Step 4 is based on the work of Rosen

(1974), Atkinson and Halvorsen (1990), and Dreyfus and Viscusi (1995) on



25

hedonic pricing.  Atkinson and Halvorsen (1990) use the data for 112 models

of new 1978 automobiles to obtain estimates of the VSL.  Since the available

fatality data is a function of both the inherent risk of the vehicle and the

driver’s characteristics, the drivers’ characteristics are included in the

regression as control variables.   Their estimated VSL for the sample as a

whole, based on willingness to pay, is $3.357 million 1986 dollars.

The data used in Dreyfus and Viscusi (1995) differ from those used in

earlier studies in that they reflect actual consumer automobile holdings.

Dreyfus and Viscusi (1995) use the 1988 Residential Transportation Energy

Consumption Survey together with data from industry sources.  They

generalize the standard hedonic models to recognize the role of discounting

on fuel efficiency and safety.  The estimates of the implicit value of life range

from $2.6 to $3.7 million and the estimates of the discount rate range from 11

to 17 percent.

The hedonic price equation for automobiles can be written, following

Atkinson and Halvorsen (1990), as follows:

Pauto = f(R, A),

where Pauto is the price of an automobile, R is the inherent risk of mortality (a

similar measure for injury could also be included) associated with the

automobile, and A is a vector of other characteristics. The available mortality

rate, F, is a function of both R and a vector of the involved driver’s
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characteristics D.  Assuming that F is monotonic in R, the above equation can

also be written as:

Pauto = g(F, A, D),        

The standard functional form used for the estimation of a hedonic price

equation is:

( ) ( )∑∑ +++=
k

kk
i

iiauto eXDP log log 0 βγβ

where Xk is a representative measured regressor (e.g. horsepower to weight

ratio), Di is a dummy variable for vehicle type, γk , βk  are the corresponding

parameters and e is an unobserved residual.

A different approach was proposed in the previous section, and it

involves predicting the inherent mortality rate using standardized driver’s

characteristics.  In other words, the unobserved values of R are predicted

directly.  Since the typical number of occupants of a vehicle is two, the

observed mortality rate F is twice the size of the average mortality rate per

occupant.  The corresponding value of R should also reflect the fact that there

are two occupants on average.  Consequently, the predicted value 21 ˆˆˆ rrR +=  (i

= 1 is the driver and i = 2 is the passenger), where ir̂  is the predicted

probability of a fatality for an individual, defined in the previous section.  The

standardized inherent mortality rates for two male occupants for year 1995

automobiles are summarized by type of vehicle in Figure 4.1.  The minimum,

average and maximum risks of mortality for each type of vehicle are
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illustrated.  Meanwhile, Figure 4.2 provides the corresponding scales for the

raw (unadjusted) mortality data based on 1996-1997 FARS data.  Comparing

the two figures, the relative ranking among different types of vehicle are quite

consistent, while the standardizing procedure significantly reduce the ranges

of the risk of mortality.

One might be surprised by the implication from Figures 4.1 and 4.2 that

large sports utility vehicles (SUVs) are not safer than middle size sedans and

wagons.  From Table 4.1 and Table 4.2, the average standardized and

observed risks of mortality show that large SUVs are safer in two-vehicle and

multiple-vehicle accidents.  However, they are much less safe in one-vehicle

accidents because, the probability of having an accident is higher.  This point

can be further illustrated by the information in Table 4.3.  For two-vehicle

accidents, large SUVs have the lowest mortality rate per occupant (.186)

among all types of vehicle, which is less than half of the rate for middle size

cars (.435).  This advantage is partially offset by the higher accident rate for

large SUVs compared to middle size cars.  The impression that large SUVs are

safer than other vehicles comes from observing that occupants in a large SUV

are more likely to survive in a fatal accident than the occupants of other types

of vehicle.

Another cost associated with reducing the risk of mortality and injury

is buying more fuel because heavier vehicles are safer but have lower fuel
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efficiencies.  Consequently, a hedonic model of fuel efficiency augments the

standard hedonic model of the purchase price in our model.  In this model, the

cost of additional safety has a capital component and an operating component.

In the latter case, the cost penalty corresponds to the reduced fuel efficiency

when a heavier vehicle is purchased.  The hedonic model of fuel efficiency has

the same form as the hedonic model of the purchase price, and it can be

written:

( ) ( )∑∑ +++=
k

kk
i

ii eXDcityfe   log  _log 0 αδα

where fe_city is the rated miles per gallon for city driving, Xk is a

representative measured regressor, Di is a dummy variable for vehicle type, δi

, and αk are the corresponding parameters and e is an unobserved residual.

4.2 The Data

The 1995 National Personal Transportation Survey (NPTS) is used to

obtain information on each household’s choice of automobiles.  The 1995

NPTS was conducted by the Research Triangle Institute (RTI) under the

sponsorship of the U.S. Department of Transportation (DOT).  The survey

covers 42,033 sampled households.  A sub-data set of 4036 one-car households

holding a 1990-1995 model year vehicle were merged with vehicle attribute

data collected from industry and other sources for the same years. The vehicle

price data were gathered from NADA Official Used Car Guide, and other
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attribute data were collected from NADA Official Used Car Guide, Ward’s

Automotive Yearbook, and Consumer Reports.  The mortality rate is measured by

the number of fatalities occurring in each make/model/year vehicle per 1000

vehicles sold. The number of fatalities is based on the U.S. Department of

Transportation’s Fatality Analysis Reporting System (FARS) for calendar year

1995-1997.  Since the observed mortality rate is jointly determined by the

inherent risk associated with the type of automobile and the driver’s

characteristics and behavior, driver’s characteristics are also collected for each

make, model and year to provide control variables using FARS 1995-1997 as

the source.

In addition to the risk of mortality, a second safety measure, injury rate,

is introduced.  The injury rate by make and model of vehicle is published

annually by the Highway Loss Data Institute.  It is measured by the frequency

of insurance claims filed under Personal Injury Protection coverages.  The raw

injury rates are adjusted by the same factors used to standardize raw mortality

rates.  The implicit assumption is that the “bad” driving characteristics that

contribute to fatal accidents also affect injuries.  The scatter plots of injury rate

vs. mortality are presented in Appendix C.  Appendices are available from the

authors upon request.

The variables used in the hedonic price equation are summarized in

Table 4.4, while Table 4.5 shows the descriptive statistics of selected vehicle
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attributes.  The selection of vehicle attributes and driver’s characteristics is

similar to Dreyfus and Viscusi (1995) and Atkinson and Halvorsen (1990).  It

should be noted that the observed mean mortality rate is higher than the

standardized mean and the observed standard deviation is also higher.  The

reason is that the standardized mortality is based on one average male driver

and one average male passenger.  Even though average values of the other

regressors are used, the elimination of young drivers, for example, results in

lower average mortality rates.  The effect of standardizing drivers’

characteristics to predict the inherent mortality rate has the effect, as expected,

of reducing the variability of mortality among vehicles.

4.3 The Estimated Hedonic Models

Least square estimates of the hedonic price model and the fuel

efficiency model are presented in Table 4.9.  Model A is the hedonic equation

of fuel efficiency, using the standardized mortality rate.  Model B is the

hedonic equation of capital cost, using the standardized mortality rate.  In

Model A and B, variables with small t ratios and perverse signs have been

dropped.

The most important parameter for computing the VSL is the coefficient

for the mortality rate, and the values in Model A and B have the right signs

and are both significant.  In other hedonic price models, fuel efficiency is
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included as a regressor in Model B, but it often has a large t ratio and a

perverse negative sign (fuel efficiency is a positive attribute).  Hence, some

explanation is needed to explain why fuel efficiency is omitted in Model B.

The implication of Model A is that fuel efficiency is a dependent variable, like

the price, and is a function of the vehicle’s characteristics.  The model

corresponds to a simplified reduced form for a system of two equations.  If the

predicted fuel efficiency from Model A is used as a regressor in Model B, the

coefficient has a logical positive sign.  The overall effect on the estimated VSL

is small, however, if the direct effects of mortality on price and fuel efficiency

are combined with the indirect effect on the price through fuel efficiency.  This

is not really surprising because the model presented in Table 4.6 is equivalent

to a solved reduced form for a structural model which has fuel efficiency as a

regressor in the hedonic price equation (the equation for fuel efficiency

remains the same).

4.4 Estimates of VSL

The standard expression for determining the VSL from the hedonic

price model for any make, model and year of vehicle, without the operating

cost component, is:

 ( ) ,
tL

1t i1
1/R/autoPmVSL














∑
=








+
β=



32

The expression represents the marginal change in the annualized capital cost

for a reduction of one fatality.  Adding the annual operating cost component,

the full estimate of VSL for any make, model and year of vehicle is:

( ) ),R/M)(city_fe/(P
tL
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where VSL is the average VSL for a household,

βm  is the coefficient for mortality in Model B,

Pauto is the purchase price of the vehicle,

R is the standardized mortality rate for a one-vehicle household,

i is the discount rate, set to 10 percent,

L is the expected vehicle life, set to 10 years,

Pgas is the average gasoline price in year 1995, set to $1.205 per gallon,

αm is the regression coefficient for mortality in Model A,

fe_city is the city fuel efficiency in miles per gallon,

M is the average annual miles driven.

Determining the mortality rate R

The mortality rate for each one-vehicle household can be written as

follows:

i

n

1i
ifmR ∑

=
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where i = 1, 2, …, n refers to individual i

m is the number of miles traveled as an occupant of the vehicle

f is the unconditional risk of fatality per mile.

The procedures used to determine fi are exactly the ones described in

the previous section for estimating the inherent mortality rates for different

vehicles.  The main difference is that the inherent mortality rates are based on

the same set of characteristics for a driver and a passenger for every vehicle.

In contrast, the estimated VSL for a single-vehicle household is based on the

actual age composition of each household.  To complete the determination of

R, it is necessary to specify how many miles each member of a household

rides in a vehicle (i.e. the mileage weights α).

There are two different types of variable in the NPTS data set that can

be used to provide information about the mileage weights.  The first is to

compare average distances driven per vehicle for different types of household.

It is interesting to note that the average distances driven for different types of

vehicle are quite similar.  Furthermore, the average distances per vehicle are

similar for households with one vehicle or with more than one vehicle.  In

other words, the total distance driven by a household is roughly proportional

to the number of vehicles owned.  Nevertheless, there is an important

difference in the distances driven per vehicle for different households.  It is

that households with seniors tend to drive less than other types of household.
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The average annual mileages per vehicle are summarized in Table 4.7 for three

different types of single-vehicle household.  The assumption used to estimate

the VSL is that Type 3 households with seniors drive 8.87/12.614 = 0.70 of the

distance driven by Type 1 households.  (Note that this lower distance driven

by seniors partially offsets the lower survival rates in accidents for seniors).

Type 2 households are given the same weight as Type 1 households because

the difference between the average distances driven is relatively small.

The second type of information in the NPTS data set gives the

distribution of ages of all members of a household in the sample.  The results,

summarized in Table 4.8, show that 24% of all household members are kids (0-

15 years old), 65% are adults (16-64) and 11% are seniors (>65).  Comparing

these values with the corresponding age distribution of occupants of vehicles

in accidents (i.e. information from the FARS data set) shows that only 11% of

occupants are kids, 80% are adults, and 9% are seniors.  (Note that this age

distribution, identified as “FARS adjusted” in Table 4.8, is based on the

estimated unconditional number of accidents and not just on the observed

number of fatal accidents.  This increases the relative importance of one-

vehicle accidents with a driver only, for example, because the difference

between the conditional and unconditional probabilities is greatest for this

type of accident.  Separate adjustments are made for each type of accident

(one-vehicle, two-vehicle, and multiple-vehicle accidents) for the sub-samples
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used to estimate the hedonic models in the previous section.  The results for

each type of accident are then prorated to the full sample.)  The main

implication is that kids and seniors are underrepresented as occupants of

vehicles in accidents and adults are overrepresented relative to the age

distribution of household members in the NPTS data set.  One reason for this

difference is that over 60% of the vehicles involved in accidents have a driver

only and no passengers.  Hence, the mileage weights for passengers must be

substantially lower than they are for drivers.

Estimates of the mileage weights for different ages in a household will

be available later this year after a national survey of vehicle usage has been

completed for the EPA.  Given available information at this time, a relatively

simple weighting scheme is adopted for kids, adults, and seniors.

Since the average annual mileages per vehicle are similar for

households with one vehicle and more than one vehicle, each vehicle in the

NPTS data set is assigned a driver (an adult or a senior) in a household.

Hence, the number of assigned drivers in a household is less than or equal to

the number of vehicles.  Drivers are assigned a relative mileage weight of one.

Additional household members who are not identified as drivers are given a

relative mileage weight of .392 (corresponding to the observed proportion of

vehicles in the FARS data set with passengers).  Weighting all passengers,

including kids, by 0.392 gives the proportions shown in Table 4.8 as “NPTS
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adjusted 1”, and the adjusted proportion of kids is now much lower than the

observed proportion.

A second adjustment to the NPTS proportions accounts for the lower

number of miles driven by seniors.  Weighting the proportion for seniors in

“NPTS adjusted 1” by .703, and rescaling the three proportions to add to one,

gives “NPTS adjusted 2”.  Comparing these proportions with “FARS

adjusted” shows that the two sets of adjusted proportions for accidents (FARS

adjusted) and households (NPTS adjusted 2) are very close to each other.  In

other words, converting all members of households to adult driver

equivalents reconciles the major differences between the age distribution of

the occupants of vehicles in the FARS data set and the observed age

distribution of households in the NPTS data set.

Even though the adjusted age distributions for accidents (FARS

adjusted) and for households (NPTS adjusted 2) are quite similar, the adjusted

value for kids in households is still 10% larger than the adjusted value in

accidents.  Hence, the relative mileage weight for kids is reduced further to

make the ratio of kids in FARS adjusted to NPTS adjusted 2 equal to the

corresponding ratio for adults.  The final weight is 0.345 = .392(.111/.124) x

(.788/.801).  For adults and seniors, the same weights used to adjust the NPTS

data in Table 4.8 are adopted to determine the relative mileage weights for the
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household mortality rate, R.  If the mileage weight for an adult driver is m1,

the relative mileage weights (mi/M1) used to determine R are:

adult drivers 1.00

other adults 0.39

senior drivers 0.70

other seniors 0.70 x 0.39 = 0.27

kids 0.35

Determining the average VSL by household type

In order to calculate the VSL, a simulation is conducted for each one-

vehicle household based on the estimated mortality rates, R.  (The average

annual mileage driven by an adult driver is M = 13,989 from the NPTS data

set.)  To simplify the simulation, the differences associated with gender were

not considered.  The driver of each household is assumed to be a male with

average driving characteristics (e.g. average alcohol involvement, etc.).  Adult

and senior passengers are assumed to fill the front seat first, while kids always

sit in the back.  Using these assumptions, the means of the estimated VSL for

different types of household are presented in Table 4.9.  The main implications

of the values of VSL in Table 4.10 are 1) the operating cost component is

relatively small compared to the capital cost component, and 2) the VSL of $4

million for Type 1 households, with no kids and no seniors, is over a third
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larger than the VSL for the other two types of household.  One reason for this

latter result is that incomes for Type 1 households are relatively high.  Hence,

adjusting for income differences is the next task.

Standardizing incomes for different types of household

Household income is reported in the NPTS data set,  and the average

values for different types of household are shown in Table 4.10 together with

the average household sizes.  Accounting for different sizes of household is

the first step in standardizing income.  To account for the shared benefits

experiences by households with more than one member (e.g. lower housing

costs per capita), household income is converted to income per adult

equivalent.  The standard weights adopted by the U.S. Bureau of the Census

are used (see Table 4.10 for the values).  Using this measure, the income per

adult equivalent for one-vehicle households is over $33 thousand for

households with no kids and no seniors (Type 1), but only $20 thousand for

households with kids (Type 2).  (Note that the difference would be even

greater using income per capita.)  The corresponding incomes for the full

sample of all households are also given in Table 4.10.  The main implications

are that the income level for households with kids is higher for the sample of

all households, but the income levels for Type 1 and 2 households in one-

vehicle households are similar to the corresponding levels for all households.
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Using income per adult equivalent as the measure of income for each

type of household, it is straightforward to standardize income to the average

value for all households ($28 thousand).  Since VSL is almost certainly

positively related to income, the differences in the values of VSL for different

types of household in Table 4.9 are generally consistent with the differences in

income in Table 4.10.  Nevertheless, there is no unique way to adjust the value

of VSL for a specified change of income.

Theory suggests that VSL is a function of wealth, which in turn is a

function of income.  If the income elasticity of the VSL is one, any percentage

increase of income would give the same percentage increase of VSL.  In

contrast, Blomquist has argued that utility may include a non-wealth

component.  Since the VSL for an individual is mostly determined by the ratio

of total utility to the marginal utility of consumption, the non-wealth

component of utility will increase the VSL but reduce the size of the income

effect.  Blomquist’s analysis suggests that an appropriate income elasticity

may be 0.3 (1979).

The results in Table 4.11 are derived using the following formula to

computed adjusted values of VSL:

θ∗ = )I/I(VSLVSL iii

Where i is the type of household

VSLi is the value in Table 4.9
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Ii is the income per adult in Table 4.10

I = $28 thousand is the average income per adult for all households

∗
iVSL  is the adjusted VSL

The adjusted values of VSL in Table 4.11 show the importance of the income

elasticity.  For both values of θ, the values of VSL are closer together compared

to the unadjusted values.  When θ = 1, the VSL for households with kids (Type

2) is larger than the values for the other types of household.  The values of

VSL for households with seniors (Type 3) are always the lowest.  This is

consistent with the life-cycle model of Viscusi that implies values of VSL

decline with age.

Estimating the VSL for different age groups

The average VSL for adults (Type 1 households) and for seniors (Type 3

households) are estimated directly in Table 4.11, but the VSL for Type 2

households combines the values for kids and adults.  The next step is to

estimate a VSL for kids.

The basic economic and demographic characteristics for different types

of household in the NPTS survey are listed in Table 4.10 for one-vehicle

households and for the complete sample of all households.  The average

household size and the average number of adults in each type of household

are calculated from the NPTS survey.  Assuming the VSL of an adult in Type 1
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and 2 households are the same, the VSL for kids can be derived from the

values of VSL in Table 4.11 by decomposing the average VSL for a Type 2

household as follows:

2 typekidsadults VSL)
2  typeof size household

2  typeof adults of #1(VSL)
2  typeof size household

2  typeof adults of #(VSL =−+

The results in Table 4.12 summarize VSL values for kids, adults and seniors.

They show that the VSL is very sensitive to the value of the income elasticity

θ.  When θ = 1, the average VSL for kids is the largest among the three age

groups, but when θ = .3, it is the lowest.  (When θ = .65, the average VSL for

kids is same as the VSL for adults.)  The average VSL for seniors is lower than

the VSL for adults for both values of θ.  Even though seniors drive relatively

safe vehicles and fewer miles, the additional safety is more than offset by

higher fragility in accidents.

Adjusting for adult drivers’ perception of risk

A final modification to the values of VSL is to account for the bias in

drivers’ perceptions about their driving ability and safety on the road (see

Blomquist, Miller and Levy).  Roughly 80 percent of drivers think that their

driving skill is above average (i.e. their subjective probability of having a fatal

accident is lower than the true probability by a factor of approximately .8/.5 =

1.6).  The two modified VSL in Table 4.12 correspond to the two adjusted VSL
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x 1.634 following Blomquist et al.  With this modification, VSL values of

almost $8 million are obtained (for kids using modification 1).

The average ages of kids, adults and seniors in the NPTS data set are

7.8, 39.0 and 72.8 years, respectively.  These representative ages are used in

Figure 4.3 to plot the adjusted and modified VSL against age.  Figure 4.3

provides additional evidence that the VSL for adults and seniors is consistent

with the life-cycle model proposed by Moore and Viscusi (1988).  It also shows

how sensitive the VSL for kids are to assumptions about the income elasticity.
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Section 5. Conclusions

Our analysis in the preceding sections, while encouraging for our

forthcoming national survey of automobile usage, points out some important

potential difficulties.

First, from the theoretical model of Section 2, it is apparent that we

must collect very detailed data on usage by individuals, by automobile type,

to estimate fraction of usage by age (child, adult, or senior) for multiple car

families.

Second, since risk differs depending on seating position, these data

must be collected as well.

Finally, considerable theoretical speculation exists that the value of a

statistical life should differ by age.   We find this hypothesis is consistent with

our preliminary analysis in that the elderly have a lower VSL than adults.

However, our theoretical work is the first on children and suggests that

the VSL of the young should be similar or slightly less than adults.  To

illustrate this point, consider the simplified intertemporal model of Moore and

Viscusi (1988) who suggest that the VSL at age t is equal to the value of a life-

year times the discounted present value of remaining life years, or

( ) δ− δ− /e1V )t(R , where V  is the value of a life-year (assumed constant over

time), δ is the discount rate, and R(t) is the remaining years of life at age t.  For

example, using average life expectancy for 1992 from the National Center for
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Health Statistics, and an interest rate of 10%, the value of V  is multiplied by

10 for an eight year old child, 9.8 for a 39 year old adult, and 7.1 for a seventy-

three year old.  Our best estimates of the VSL for adults (modified 2 in Table

4.12) of $6.34 x 106 implies that V  = $646,939 in the Moore and Viscusi

formula.  Using this formula implies that a child’s VSL would be only slightly

more than an adult’s ($6.47 x 106 vs. $6.34 x 106) and that the elderly value

their lives somewhat less than adults ($4.59 x 106 vs. $6.34 x 106).  The values

of VSL for the quantity adjusted model are also shown in Table 4.12.  Clearly

our best estimates of the VSL for children and the elderly both fall below those

implied by the predicted quantity adjusted value of life model.  However, the

latter model was developed for working adults.  Note from our theoretical

model, the VSL shown in Equation (8) is equal to the monetized value of

utility plus the wage minus consumption.  In an intertemporal model, this

expression is the equivalent of V  as defined above.  Thus, since wage minus

consumption is positive for adults, but negative for children and the elderly, it

is unsurprising that the Moore and Viscusi model overpredicts the VSL of

children and the elderly.

However, this interpretation depends on the assumption of an

income elasticity of .3 for the VSL incorporated into the “Modified 2” values in

Table 4.12.  With new primary data, which will allow inclusion of multiple car,

higher income families with children, we hope to be able to directly estimate
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values for similar income groups as well as estimate the income elasticity of

the VSL.  In addition, we hope to estimate a full life cycle model of the VSL in

a family.
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Table 4.1: The Standardized Risk of Mortality by Vehicle and Type of
Accident

Vehicle Type Total
Risk

One-Car
Accidents

Two-Car
Accidents

Multiple-Car
Accidents

small sedans &
wagons

9.2 3.4 4.4 1.4

middle sedans &
wagons

6.9 3.3 2.5 1.0

large sedans &
wagons

6.5 3.5 2.1 0.8

luxury sedans &
wagons

7.2 4.7 1.7 0.8

small & mid.
specialties

9.5 5.6 3.0 1.0

luxury sports 25.3 21.8 2.6 0.9
small suv 17.1 12.0 3.6 1.6
large suv 9.4 7.1 1.6 0.7
van (minivan) 5.0 2.7 1.5 0.8
small pickup 12.4 7.7 3.5 1.2
large pickup 8.6 5.8 2.0 0.8
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Table 4.2: The Observed Risk of Mortality by Vehicle and Type of Accident
(Year 1996-1997 Average)

Vehicle Type Total
Risk

One-Car
Accidents

Two-Car
Accidents

Multiple-Car
Accidents

small sedans &
wagons

30.8 12.2 14.1 4.6

middle sedans &
wagons

22.5 12.1 8.8 1.6

large sedans &
wagons

17.7 5.4 11.2 1.2

luxury sedans &
wagons

9.3 4.9 3.2 1.2

small & mid.
specialties

33.8 20.5 10.3 3.0

luxury sports 26.2 23.6 2.6 0.0
small suv 53.4 26.6 25.6 1.2
large suv 21.1 16.2 3.5 1.4
van (minivan) 24.6 12.8 8.8 3.0
small pickup 26.1 17.6 7.2 1.4
large pickup 17.6 11.6 4.8 1.2
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Table 4.3: The Observed Mortality Rates Per Occupant and Accident Rates
per 1000 Vehicles for Fatal Two-vehicle Accidents (Average 1996-1997)

Vehicle Type Mortality
Rate

Accident
Rate

small sedan & wagons 0.512 0.193
middle sedan & wagons 0.435 0.169
large sedan & wagons 0.370 0.159
luxury sedan & wagons 0.369 0.113
small & mid. specialties 0.429 0.171
luxury sports 0.329 0.109
small suv 0.430 0.189
large suv 0.186 0.193
van (minivan) 0.218 0.221
small pickup 0.368 0.188
large pickup 0.201 0.244
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Table 4.4: Variable Definitions

Variable Name Definition
Price Vehicle price as of end-of-year 1995.
Value Retained Original sales value retained, as of end-of-year 1995.
Mortality Rate,
Observed

Number of fatalities occurring in that make/model/year
vehicle per 1000 of that vehicle sold.

Mortality Rate,
Standardized

Predicted number of fatalities in that make/model/year
vehicle per 1000 of that vehicle sold with average 2
occupants.

Injury Rate An Index based on the frequency of insurance claims. The
lower, the safer.

CityFuel efficiency Miles per gallon in city area.
CityFuel efficiency
Predicted

Predicted Miles per gallon in city area.

Reliability Rating A discrete variable coded from 1 to 5, 5 is the highest
while 1 is the lowest.

Acceleration The horsepower-to-weight ratio.
Traditional Styling Length plus width divided by height.
ClassX Discrete variables coded as 1 for the appropriate class.

Class1 to class7 represent small, middle, large, luxury,
SUV, van, and pick-up truck, respectively.

YearXX Discrete variables coded as 1 for the vehicle model year.
Young Driver Proportion of fatalities in this make/model/year vehicle

in which the driver was younger than 25 years.
Older Driver Proportion of fatalities in this make/model/year vehicle

in which the driver was 65 or older.
Alcohol Proportion of fatalities in this make/model/year vehicle

in which the alcohol involvement was reported.
Gender of Driver Proportion of fatalities in this make/model/year vehicle

in which the driver was male.
Seat Belt Proportion of fatalities in this make/model/year vehicle

in which the driver was wearing a seat belt.
Previous Offenses Proportion of fatalities in this make/model/year vehicle

in which the driver had no previous offense.
Late Night Proportion of fatalities in this make/model/year vehicle

which occurred between 12:00am to 5:59am.
One-car Accident Proportion of fatalities in this make/model/year vehicle

in which only one vehicle was involved.
Ford, GM, Chrysler,
Germany, Japan

Discrete variables coded as 1 for the manufacturer and 0
otherwise.

MB Dummy variable coded as 1 for Mercedes Benz, 0
otherwise.
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Table 4.5: Summary Statistics of Selected Variables

Variable Mean Standard Deviation

Price 15703.53 9371.57

Value Retained 0.7720 0.1753

Mortality Rate, Observed 0.1345 0.0994

Mortality Rate, Standardized 0.0939 0.0401

Injury Rate 73.72 42.12

City Fuel-efficiency 20.26 4.82

Reliability Rating 3.019 1.321

Acceleration 0.0475 0.0102

Traditional Styling 4.451 0.519
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Table 4.6: Parameter Estimates for the Hedonic Equations

Model A Model B
Variable Estimated

Coefficient
t ratio Estimated

Coefficient
t ratio

Dependent Fe_city Pauto

Constant 2.5689 14.13 7.7174 25.45
Value Retained 0.0549 3.35 0.4594 11.10
Mortality Rate 0.0258 1.99 -0.0690 -3.53
Injury Rate 0.0330 4.01 -0.0161 -1.31
Reliability Rating 0.0170 5.05 0.0617 5.23
Acceleration -0.2290 -8.04 0.6014 13.99
Traditional Styling -0.2786 -5.21 0.6035 7.56
Class2 -0.1873 -16.56 0.2426 14.34
Class3 -0.2751 -14.69 0.3734 13.28
Class4 -0.2852 -19.29 0.6752 29.76
Class5 -0.6397 -37.47 0.8127 31.94
Class6 -0.4846 -24.84 0.6558 22.67
Class7 -0.4352 -27.49 0.3398 14.31
Year91 0.1137 6.31
Year92 0.2100 10.53
Year93 0.2977 13.16
Year94 0.3880 15.30
Year95 0.4474 16.14
Ford 0.0347 1.90 -0.0972 -3.58
GM 0.0334 1.94 -0.0879 -3.44
Chrysler 0.0196 1.12 -0.1148 -4.43
Germany -0.0562 -2.84 0.1489 5.05
Japan 0.0470 2.73 -0.0430 -1.71
MB -0.0078 -0.33 0.5237 14.89
R2 0.7626 0.8996
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Table 4.7: Average annual mileage for single-vehicle households:

Household Category 1000 miles

Grand Mean 12.327

Type 1 12.614

Type 2 13.410

Type 3 8.870

Type 1: Household with no one retired and no kids.
Type 2: Household with kids.
Type 3: Household with a retired member and no kids.

Table 4.8: Age distributions of vehicle occupants and households:

Kids Adults Seniors

FARS observed .113 .785 .102

FARS adjusteda .111 .801 .088

NPTS observed .241 .646 .113

NPTS adjusted 1b .119 .759 .122

NPTS adjusted 2c .124 .788 .088

a  to account for accidents with no fatalities.
b  weighting passengers by .392 and drivers by 1.
c  adjustment (1) plus weighting seniors by .703 to account

for lower annual miles driven
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Table 4.9: Estimated Values of a Statistical Life (VSL)
    for Different Types of Households

Household
Category

Capital cost
component
($millions)

Operating cost
component
($millions)

VSL
($millions)

Grand Mean 3.09 0.38 3.47
Type 1 3.64 0.45 4.09
Type 2 2.63 0.33 2.97
Type 3 2.42 0.30 2.72

Type 1: Household with no one retired and no kids.
Type 2: Household with kids.
Type 3: Household with a retired member and no kids.
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Table 4.10: Economic and Demographic Characteristics of Households

Household Category

Average
Household

Size

Average
number of

Adults

Average
Number of

Adult
Equivalents*

Average
Household

Income
($1000)

Average
Income Per

Adult
($1000)

One-Vehicle Households
Grand Mean 1.9 1.5 1.278 33.649 27.743
Type 1 1.4 1.4 1.103 36.378 33.436
Type 2 3.5 1.7 1.795 35.380 20.430
Type 3 1.6 1.6 1.174 26.934 23.025

All Households
Grand Mean 2.7 1.9 1.516 41.080 28.007
Type 1 1.9 1.9 1.273 42.725 33.570
Type 2 4.0 2.0 1.964 45.269 23.607
Type 3 1.8 1.8 1.229 29.110 23.264

*The equivalence scale is based on the official weighted average poverty thresholds for 1992 (Data Source:
Bureau of the Census (1993: Table A)), following the Table 3-1 of Citro and Michael (1995).  The values of the
equivalence scale are 1, 1.279, 1.566, 2.007, 2.323, 2.679, 3.023, 3.367 and 4.024 for family size 1, 2, 3, 4, 5, 6, 7, 8,
and 9 or more, respectively.

Type 1: Household with no one retired and no kids.
Type 2: Household with kids.
Type 3: Household with a retired member and no kids.
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Table 4.11: Values of VSL Adjusted for Income

Household
Category

VSL
(Table 4.9)
$ million

VSL*
θ = 1.0

$ million

VSL*
θ = 0.3

$ million

Grand Mean 3.47 3.51 3.48

Type 1 4.09 3.42 3.88

Type 2 2.97 4.07 3.26

Type 3 2.72 3.31 2.89

Type 1: Household with no one retired and no kids.
Type 2: Household with kids.
Type 3: Household with a retired member and no kids.



Table 4.12: Estimated Values of a Statistical Life (VSL) for Different Age
Groups

VSL ($Millions) Kids Adults Seniors

Adjusted for Income
Adjusted 1 4.73 3.42 3.31
Adjusted 2 2.62 3.88 2.89

Adjusted for Risk Perception
Modified 1 7.74 5.60 5.42
Modified 2 4.28 6.34 4.72

Quantity Adjusted Model 6.47 6.34 4.59

Age 7.8 39 72.8



Figure 4.1: Standardized Scales for the Risk of Mortality

Low Fatality  
1 2 3 4 5 6 7 8 9 10 11

3    6      9        12            15 18    21       24          27 30   33+
small sedan &
wagons          7.1      9.2 14.0
middle sedan &
wagons       4.4        6.9    9.3

large sedan & wagons      4.3     6.5 8.5
luxury sedan &
wagons   3.5            7.2          15.3
small & mid.
specialties          7.1          9.5  16.6

luxury sports 13.4 25.3     47.7

small suv 15.5   17.1  18.1

large suv       6.7           9.4              15.5

van (minivan)   4.0   5.0      7.0

small pickup      11.0 12.4     14.7

large pickup               7.3    8.6         11.8

Note: The scale is based on predicted total fatalities per 100,000 vehicles (1995 model year) per 10,000 miles driven with 2 occupants.
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Figure 4.2: Unadjusted Scales for the Risk of Mortality

Low Fatality  
1 2 3 4 5 6 7 8 9 10 11

12
0   10     20        30          40           50  60     70        80          90 100+

small sedan &
wagons 0         30.8           101.4

middle sedan &
wagons   2.4       22.5            76.6

large sedan & wagons 8.2 17.7 44.9
luxury sedan &
wagons 0              9.3      48
small & mid.
specialties 1.7 33.8 83.6

luxury sports 0     26.2        99.7

small suv        38.9 53.4 69.8

large suv 0   21.1     110.1

van (minivan) 0             24.6           91.5

small pickup    12.1 26.1 53.7

large pickup 10       17.6     23.7

Note: The scale is based on the observed total fatalities in year 1996-1997 per 100,000 vehicles (1995 model year) on road per 10,000
miles driven (average annual miles driven is 13989 miles).



Figure 4.3: The Value of a Statistical Life by Age

Definitions are provided in Tables 4.11 and 4.12.
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Appendix A: Econometric Models Used to Estimate the Mortality Rate for

Vehicles

The inherent mortality rate for an individual in a vehicle can be

decomposed as follows:

{ }( ) { }( )[ ]MPVmPPVPPVPr m *)1}({*12*11 21 −+−+−= ,

where r is the annual fatality rate per capita;

P{V1} is the probability of having a one-vehicle accident per 10000

miles;

P{V2} is the probability of having a two vehicle accident per 10000

miles;

P{Vm} is the probability of having a multiple (three or more) vehicle

accident per 10000 miles;

P1* is the probability of surviving in a one-vehicle accident;

P2* is the probability of surviving in a two-vehicle accident;

P3* is the probability of surviving in a multiple-vehicle (three or more)

accident;

M is the average annual mileage traveled (13989 miles from the NPTS).

The likelihood function for the probability of survival can be specified

as:
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Two-car accidents:
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where i = 1, …, n, individuals;

j = 1, …, m, vehicle;

k = 1, …, K, accidents;

Yijk = 1 if survived, else 0.

Survival rates P1* and P2* are specified as logit form and estimated by

maximum likelihood in GAUSS using data from the FARS augmented with

additional data about vehicle characteristics (step 1 in section 3).  The

explanatory variables are summarized in Table A4.1, and the estimated

equations are shown in Tables A4.2 and A4.3, respectively. For survival rate in

the one-vehicle accidents, the effect of using a restraint (seat belt or car seat) is

very important and clearly positive, but the effect of an airbag was not

significant.  The number of occupants is significant, but without a clear

explanation.  The survival rate is relatively high in pickup trucks (Class 7). The

very inexperienced driver, 16 years or younger, has a strong negative effect on

the survival rate.
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The equation for P2* in Table A4.3 implies that the weight ratio is the

most important explanatory variable. Being in a larger vehicle increases the

chance of survival and visa-versa.  The number of occupants is also important.

The positive effect of using a restraint (seat belt or car seat) is substantially

larger than the effect of airbags. In general, the effects of the class of vehicle

are consistent with the effect of the weight ratio. Seating in a small vehicle

(Class1) reduces the probability of survival, while hitting a small vehicle

increases the probability of survival.

The equation for P{V1} and P{V2} are specified as censored regression

models to allow for a point mass at zero (18% and 27% of the models having

no recorded fatalities for one-vehicle and two- vehicle accidents, respectively).

This specification worked much better than a linear probability model.  The

data used corresponds to observations of make, model and year augmented

by average driving characteristics from the FARS.  Since the observed

probabilities of having a fatal accident per 1000 vehicles are very small, it was

unnecessary to impose an explicit upper limit of one on the dependent

variable.  The equations were estimated in SAS.

In order to be consistent with the unconditional probability of survival,

each fatal accident is scaled by the inverse of the probability of observing the

accident, i.e. at least one fatality occurred.  The scaling is very easy for one-

vehicle accidents.  But for two-vehicle accidents, we need to know the

characteristics, e.g. weight, of both vehicles.  Among the 25126 two-vehicle

accidents that occurred in 1995-1997 involving at least one of the vehicles we

studied, there are 8282 accidents having complete information for both

vehicles’ characteristics.  Thus, only one-third of the accidents have complete

information about both vehicles’ characteristics.  There are two possible



66

solutions: one is to find out the complete information of the other vehicle, the

other is to scale the accidents with unknown characteristics of the other

vehicle by the same scalar used to scale accidents with both vehicles’

characteristics known.  If the pattern of hitting the other vehicle is the same for

each make/model/year vehicle whether the characteristics of the other

vehicle is known or not, then the second way is a reasonable approximation.

A goodness-of-fit test is used to test whether the pattern of accidents is

the same or not.  The probability having a two-vehicle accident is calculated

by each make/model/year, but due to the limited number of observations,

accidents for each make/model/year were aggregated to 23 types of vehicle.

The overall χ2 test is rejected, but when we only consider the first 21 types, the

χ2 test cannot be rejected.  The remaining two types are small and large pick-

up trucks.  After comparing the distribution of the other vehicles hit by the 21

types, and by small and large pick-ups, it is found pick-up trucks tend to hit

more than their share of old vehicles, whose characteristics are not collected

by this study.  Since old and new vehicles are similar in weight, and the age of

vehicle isn’t a significant factor determining the probability of survival, all

accidents by make/model/year are inflated by the scalar derived from the

subset with complete vehicle characteristics.

The remaining part of the mortality rate estimation is to estimate the

probability for multiple vehicle accidents P{Vm} and Pm.  Unlike two-vehicle

accidents, the pattern of collision is very hard to identify in multiple-vehicle

accidents. Some of the vehicles may have no direct impact on each other.

Therefore, the model for Pm is more like the model for a one-vehicle accident,

i.e. no information of the other vehicles is included.  In addition, we assume

that all multiple-vehicle accidents are observed.  Since the total number of
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vehicle occupants involved in a multiple-vehicle accident could be quite large

(at least 3), this is a reasonable approximation.  Also, the fatalities in multiple-

vehicle accidents are only 8.5% of the total fatalities that occurred in 1995-1997.

The equation for the survival rate Pm is specified as a regular logit model and

estimated by maximum likelihood in SAS.  The equation for P{Vm} is specified

as censored regression model to allow for a point mass at zero (24% of the

models) and estimated by SAS.

Explanatory variables in the censored models for P1, P2, Pm that are not

listed in Table A4.1 are described in Table A4.5.  The basic differences are that

small subdivisions of the classes of vehicles are made, for example, to identify

sports cars from non-sports cars for one-vehicle accidents.  In addition,

variables such as styling ((length plus width/height) are included to provide

more information about the type of vehicle.

12 of the total of 1261 vehicle types were dropped, because they had

sales less than 500 vehicles, before estimating the censored regression of P{V1},

P{V2}, P{Vm}.  With a very small number of vehicles on the road, even one

fatal accident for that make/model/year will count as a big probability.  The

increase in the number of subclasses of vehicle for P{V1} was prompted by

inspection of the raw data.  The effects of variables such as alcohol and

previous convictions are partly responsible for the high rates of accidents for

some types of vehicles.  For P{V1}, P{V2} and P{Vm}, the accident rate

increases for young drivers, for older drivers and, surprisingly, for female

drivers.  Accidents are more likely to occur at highway speeds (Sp), and for all

three types of accidents, powerful vehicles (Acceleration) are more likely to

have accidents, especially for one-vehicle accidents.  The use of alcohol and

previous convictions increases P{V1}, P{V2} and P{Vm}.  The overall
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conclusion is that driving behavior does matter and affects the probabilities of

having a fatal accident for different types of vehicle.
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Table A4.1: Variable Definition for the Estimation of Probability of Survival

Variable Name Definition
Restraint Coded as 1 if the passenger used restraint, 0 otherwise.
Age0_5 Coded as 1 if the passenger age is ≤5, 0 otherwise.
Age15 Coded as 1 if the passenger age is ≥6 but ≤15, 0 otherwise.
Age21 Coded as 1 if the passenger age is ≥16 but ≤21, 0 otherwise.
Age24 Coded as 1 if the passenger age is ≥22 but ≤24, 0 otherwise.
Age_o Coded as 1 if the passenger age is ≥65, 0 otherwise.
female Coded as 1 if the passenger is female, 0 otherwise.
Occupants
Number

logarithm of number of occupants.

ClassX Discrete variables coded as 1 for the appropriate class. Class1 to class7
represent small, middle, large, luxury, SUV, van, and pick-up truck,
respectively, class40, class41 represents luxury non-sports and luxury
sports, respectively.

Weight Weight of the vehicle (1000lb).
Weight Ratio Weight ratio of the vehicle to the other vehicle in a two-vehicle accident.
Acceleration Horsepower to weight ratio.
Vehicle Age The age of the vehicle when the accident happened.
O_classX The class code for the other vehicle.
Female Driver Code as 1 if the driver is female.
Driver 16 Code as 1 if the driver is ≤ 16.
Young Driver Coded as 1 if the driver is ≥16 but ≤24, 0 otherwise.
Older Driver Coded as 1 if the driver is 65 or older.
Alcohol Coded as 1 if the alcohol involvement is reported
Late Night Code as 1 if the accident occurred between 12:00am to 5:59am.
No Previous
Offenses

Code as 1 if the driver had no previous offenses.

Sp_limit Speed limit (10 miles).
Seatfp Coded as 1 for front seat non-driver passenger.
Seatb Coded as 1 for back seat passenger.
airbag Coded as 1 for airbag in that seat position.
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Table A4.2: The Probability of Survival in a One-Vehicle Accident

Parameters Estimates t ratio Prob.
Constant 1.485 5.067 0
Restraint 1.0943 25.028 0
Age0_5 0.2011 2.407 0.0161
Age15 0.6061 9.552 0
Age21 0.4501 8.547 0
Age24 0.3464 5.701 0
Age_o -1.0999 -10.49 0
female -0.2026 -5.948 0
Occupants Number 0.3961 5.999 0
Weight -0.0737 -1.176 0.2395
Acceleration -8.913 -2.539 0.0111
Vehicle Age 0.0025 0.154 0.8777
Class2 -0.0018 -0.022 0.9821
Class3 -0.0028 -0.016 0.9875
Class40 -0.1111 -0.739 0.4602
Class41 0.2465 0.924 0.3555
Class5 0.4951 3.601 0.0003
Class6 0.2715 1.992 0.0463
Class7 0.62 5.024 0
Sp_limit -0.0627 -2.792 0.0052
airbag -0.0054 -0.109 0.9132
Seatfp -0.0612 -1.854 0.0637
Seatb 0.1249 2.535 0.0112
Driver 16 -0.4153 -4.046 0.0001
Young Driver -0.2345 -3.42 0.0006
Older Driver 0.5054 3.625 0.0003
Female Driver 0.2059 3.248 0.0012
Alcohol -0.0607 -0.965 0.3347
No Previous Offenses -0.1916 -3.417 0.0006
Late Night -0.1014 -1.672 0.0945
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Table A4.3: The Probability of Survival in a Two-vehicle Accident

Parameters Estimates t ratio Prob.
Constant 2.0436 6.544 0
Restraint 0.9234 18.053 0
Age0_5 0.0402 0.297 0.7663
Age15 0.4342 3.81 0.0001
Age21 0.4615 4.758 0
Age24 0.4571 4.14 0
Age_o -1.5055 -13.25 0
female -0.1744 -3.467 0.0005
Occupants Number 0.2572 4.65 0
Weight 0.1566 1.431 0.1523
Weight ratio 1.3538 6.626 0
Vehicle Age -0.0018 -1.02 0.3077
Class2 0.0684 0.735 0.4624
Class3 0.0407 0.254 0.7993
Class40 -0.28 -1.773 0.0762
Class41 -0.4624 -1.136 0.2561
Class5 0.4542 2.837 0.0046
Class6 0.4554 3.184 0.0015
Class7 0.6685 5.06 0
O_class2 -0.1202 -1.167 0.2431
O_class3 -0.0789 -0.47 0.6387
O_class4 -0.289 -1.792 0.0732
O_class41 -1.7245 -5.119 0
O_class5 -0.3271 -2.064 0.039
O_class6 -0.3155 -2.067 0.0387
O_class7 -0.4214 -3.12 0.0018
Sp_limit -0.447 12.714 0
airbag 0.1316 2.395 0.0166
Seatfp -0.114 -1.306 0.1915
Seatb 0.2585 2.418 0.0156
Driver 16 -0.613 -4 0.0001
Young Driver -0.0165 -0.177 0.8597
Older Driver 0.172 1.445 0.1484
Female Driver -0.0423 -0.696 0.4862
Alcohol -0.6062 -7.997 0
No Previous Offenses -0.0599 -1.15 0.2501
Late Night -0.6222 -6.02 0
Acceleration -2.2826 -0.594 0.5523
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Table A4.4: Logit Model for the Survival Rate in a Multiple-vehicle Accident

Parameters Estimates Wald χ2 Prob.
Constant 0.0075 0.001 0.9774
Restraint 0.9570 437.001 0.0001
Age0_5 -0.0337 0.066 0.7978
Age15 0.2592 5.312 0.0212
Age21 0.2673 6.274 0.0123
Age24 0.4072 10.560 0.0012
Age_o -1.5429 177.689 0.0001
female -0.1232 4.486 0.0342
Occupants Number 0.5399 100.273 0.0001
Weight 0.3223 35.925 0.0001
Acceleration 7.7231 4.251 0.0392
Vehicle Age -0.0072 0.216 0.6424
Class2 0.2409 11.420 0.0007
Class3 0.4135 11.050 0.0009
Class40 0.2486 3.611 0.0574
Class41 -0.0749 0.042 0.8380
Class5 0.7535 33.524 0.0001
Class6 0.6679 36.716 0.0001
Class7 0.7384 52.197 0.0001
Sp_limit -0.2297 116.802 0.0001
airbag 0.1788 8.380 0.0038
Seatfp -0.0683 1.050 0.3055
Seatb 0.2892 8.380 0.0038
Driver 16 -0.3106 2.337 0.1264
Young Driver -0.0581 0.354 0.5518
Older Driver 0.2642 4.784 0.0287
Female Driver 0.0268 0.199 0.6557
Alcohol -0.8750 108.279 0.0001
No Previous Offenses 0.0627 1.844 0.1745
Late Night 0.0192 0.045 0.8316
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Table A4.5: Variable Definition for the Censored Regression

Variable Name Definition
TypeXX Coded as 1 for the appropriate type. Type1 to Type23 represent lower,

upper small, small specialty, lower, upper middle, middle specialty,
large, large specialty, lower, middle, upper luxury, luxury specialty,
luxury sport, small, middle, large, luxury suv, small, middle, large,
luxury van, small, large pickup, respectively.

Alcohol Proportion of accidents in this make/model/year vehicle in which the
alcohol involvement was reported.

No Previous
Offenses

Proportion of accidents in this make/model/year vehicle in which the
driver had no previous offense.

Late Night Proportion of accidents in this make/model/year vehicle which occurred
between 12:00am to 5:59am.

Driver 16 Proportion of accidents in this make/model/year vehicle in which the
driver is 16 or younger.

Young Driver Proportion of accidents in this make/model/year vehicle in which the
driver is younger than 25 years, but older than 16..

Older Driver Proportion of accidents in this make/model/year vehicle in which the
driver is 65 or older.

Female Driver Proportion of accidents in this make/model/year vehicle in which the
driver was female.

Sp Proportion of accidents at highway speed.
Acceleration The horsepower-to-weight ratio.
Traditional
Styling

Length plus width divided by height.

D_airbag Coded as 1 for the driver-side airbag.
P_airbag Coded as 1 for the passenger-side airbag.



74

Table A4.6: Censored Regression for the Probability of Having a One-Vehicle
Accident

parameter Estimate std. Error ChiSquare
constant -0.2231 0.097 5.25
Alcohol 0.0925 0.019 22.69
No Previous Offenses -0.1255 0.017 51.53
Late Night -0.0056 0.022 0.07
Driver 16 0.1232 0.048 6.69
Young Driver 0.1814 0.022 69.42
Older Driver 0.1038 0.028 13.44
Female Driver 0.1018 0.019 28.28
Sp 0.1247 0.017 53.40
Acceleration 3.9825 0.654 37.08
Traditional Styling 0.0280 0.025 1.24
Weight -0.0059 0.018 0.11
D_airbag -0.0360 0.012 8.74
P_airbag -0.0159 0.013 1.42
Type2 -0.0702 0.023 9.11
Type3 -0.0604 0.029 4.21
Type4 -0.0965 0.027 12.94
Type5 -0.0805 0.028 8.17
Type6 -0.0632 0.031 4.23
Type7 -0.0969 0.038 6.44
Type8 -0.0996 0.054 3.40
Type9 -0.0985 0.034 8.45
Type10 -0.1095 0.033 10.70
Type11 -0.1558 0.041 14.47
Type12 -0.0797 0.043 3.40
Type13 0.0725 0.038 3.64
Type14 0.1634 0.044 13.98
Type15 0.1194 0.045 7.07
Type16 0.0569 0.060 0.91
Type17 0.1454 0.057 6.58
Type18 -0.0232 0.040 0.33
Type19 -0.0491 0.054 0.82
Type20 0.0110 0.062 0.03
Type21 -0.0366 0.065 0.31
Type22 0.1359 0.032 18.32
Type23 0.0932 0.052 3.23
Sigma 0.1526 0.003
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Table A4.7: Censored Regression for the Probability of Having a Two Vehicle
Accident

parameter Estimate std. Error ChiSquare
constant 0.0197 0.061 0.11
Alcohol 0.0063 0.023 0.08
No Previous Offenses -0.1561 0.015 109.11
Late Night 0.0448 0.024 3.54
Driver 16 0.1449 0.051 7.94
Young Driver 0.0980 0.018 30.26
Older Driver 0.1098 0.019 32.47
Female Driver 0.1102 0.014 61.16
Sp 0.1067 0.014 58.72
Acceleration 0.0858 0.428 0.04
Traditional Styling 0.0074 0.015 0.23
Weight 0.0261 0.010 6.22
D_airbag -0.0119 0.007 2.88
P_airbag -0.0062 0.008 0.61
Type2 -0.0258 0.013 3.84
Type3 -0.0377 0.017 4.75
Type4 -0.0630 0.015 16.87
Type5 -0.0476 0.016 8.36
Type6 -0.0549 0.019 8.73
Type7 -0.0577 0.022 6.68
Type8 -0.0887 0.031 8.28
Type9 -0.1069 0.020 28.49
Type10 -0.0972 0.021 22.06
Type11 -0.1146 0.026 19.86
Type12 -0.0909 0.027 11.46
Type13 -0.0939 0.026 13.39
Type14 -0.0438 0.026 2.75
Type15 -0.0274 0.026 1.09
Type16 -0.0196 0.035 0.31
Type17 -0.0679 0.034 3.98
Type18 -0.0469 0.023 4.03
Type19 -0.0627 0.031 3.98
Type20 -0.0193 0.036 0.29
Type21 -0.0590 0.036 2.64
Type22 0.0338 0.018 3.35
Type23 0.0218 0.030 0.52
Sigma 0.0851 0.002
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Table A4.8: Censored Regression for the Probability of Having a Multiple
(three or more) Vehicle Accident

parameter Estimate std. Error ChiSquare
constant -0.0067 0.013 0.25
Alcohol 0.0051 0.005 1.10
No Previous Offenses -0.0192 0.002 68.94
Late Night 0.0118 0.005 6.58
Driver 16 0.0291 0.008 11.76
Young Driver 0.0130 0.003 17.97
Older Driver 0.0180 0.004 26.31
Female Driver 0.0213 0.002 93.38
Sp 0.0214 0.002 103.77
Acceleration 0.1539 0.092 2.79
Traditional Styling 0.0012 0.003 0.13
Weight 0.0038 0.002 2.58
D_airbag 0.0006 0.002 0.12
P_airbag 0.0004 0.002 0.06
Type2 -0.0100 0.003 10.86
Type3 -0.0133 0.004 11.30
Type4 -0.0128 0.004 13.05
Type5 -0.0078 0.004 4.30
Type6 -0.0124 0.004 9.00
Type7 -0.0099 0.005 3.80
Type8 -0.0139 0.007 3.77
Type9 -0.0164 0.005 12.73
Type10 -0.0163 0.004 13.13
Type11 -0.0203 0.006 12.85
Type12 -0.0020 0.006 0.12
Type13 -0.0173 0.005 10.03
Type14 -0.0005 0.006 0.01
Type15 -0.0006 0.006 0.01
Type16 -0.0035 0.008 0.20
Type17 -0.0136 0.008 3.13
Type18 -0.0086 0.005 2.65
Type19 -0.0049 0.007 0.49
Type20 -0.0036 0.008 0.20
Type21 -0.0031 0.008 0.16
Type22 0.0030 0.004 0.50
Type23 -0.0018 0.007 0.07
Sigma 0.0200 0.000



Appendix B: Additional Issues on the Censored Model for the Probability of

having Vehicle Accidents

The probability of having vehicle accidents is estimated by a censored

regression model to allow for a probability mass at zero.  However, the

consistency and asymptotic normal distribution of the estimators are quite

sensitive to the error distribution.  There are two problems: First, likelihood-

based estimators are inconsistent when the assumed parametric form of the

likelihood function is incorrect.  Second, when the heteroskedasticity of the

error terms occurs, the parameter estimates are also inconsistent (Powell).

When estimating the probability of having an accident, several versions

of the censored model were tested to deal with non-normality and

heteroskedasticity of the error terms.  Those methods can be summarized into

three categories: (1) multiplicative heteroskedasticity of the error terms, (2) the

error terms contain two parts: a normally distributed residual and a

measurement error, and (3) as an alternative to maximum likelihood

estimation, the symmetrically trimmed (censored) least square estimation

(STLS) method proposed by Powell is used.

Method 1. Multiplicative Heteroskedasticity

The heteroskedastic censored model is defined as:

pi = β’xi + ui if RHS>0, (B1)

pi = 0 otherwise, (B2)

where .   and ), ,0(~ '2
i

2 iw
ii eNu ασσ =
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A test of heteroskedasticity is to test α’ = 0, except for the intercept.

Vector β’ and α’ contain coefficients corresponding to explanatory variables.

The explanatory variables x and w may or may not be identical.

Heteroskedastic censored models for one, two and multiple vehicle accidents

with identical x and w are estimated, respectively.  A likelihood-ratio test of

heteroskedasticity is conducted and the homoskedastic censored model is

rejected, indicating the existence of heteroskedasticity.

Method 2. Error Terms Containing Measurement Error

In the graph of the residual vs. the number of vehicles sold, the error

terms have an inverse relation to the number of vehicles sold.  One can view

the chance of a vehicle having an accident as a Bernoulli trial.  Given the

number of vehicles sold ni (assumed equivalent to the number of vehicles on

the road), the difference of the observed probability of having a vehicle

accident and the true probability is approximately normal distributed with

zero mean and 
i

ii

n
pp )1( −

 variance.  Further more, since the probability is very

small, the variance can be approximated as ii np / .  The censored model in

equations B1 and B2 can be specified with the error term written as follows:

ui = ei + vi , 

where ), ,0( ~  and ), ,0( ~ 2

i

i
ii n

p
NvNe σ

vi is the measurement error, pi is the probability of having an accident, and ni

is the number of vehicles sold.

Assume cov[ei, vi] = 0, then ui ~ N(0, 
i

i

n
p

+2σ ), and the log-likelihood

function can be written as:
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Again the value of the log-likelihood function is significantly larger than that

of the homoskedastic censored model even though the degrees of freedom are

the same for the two models.  Both method 1 and 2 are estimated using

GAUSS.

Method 3. Symmetrically Trimmed Least Squares Estimation for Censored

Model (STLS)

The STLS method is based on censoring of the upper tail of the

distribution of the dependent variable so that symmetry is restored. The

resulting semiparametric estimator is shown to be consistent and

asymptotically normally distributed, given the assumption of symmetrically

and independently distributed error terms.

First, the “true” underlying regression equation is

pi* = β’xi + ui..

In the censored regression model, only the values of xi and pi = max {0, pi*} are

observed, which induces asymmetry in the distribution of the error terms.

The error terms are of the form ei = max {ui, −β’xi}, the “symmetric censoring”

would replace ei with min {ui, β’xi } whenever β’xi > 0, and the observations
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with β’xi < 0 are deleted.  Therefore, under STLS method, the upper tail of the

distribution of the dependent variable is replaced with min {pi, 2β’xi}.

The symmetrically censored least squares estimator Iβ̂  is obtained by

minimizing SI(β), defined as follows:

]})xβ (max{0,)p
2
1[()xβ2I(p             

}) ,
2
1max{()(

2
i

2
ii

I

1i
i

2

1

′−⋅′>+

′−=

∑

∑

=

=
ii

I

i
iI xβppS β

,

where I(pi >2β’xi) is an indicator function, which takes the value of 1 if true,

and 0 if false. Minimizing SI(β) is conducted by the GAUSS optimization

module.  The asymptotic variance of Iβ̂  is
111 −−

III CDC
I
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ββ

ββ

where iIii xpu 'ˆˆ β−≡ , I is the total number of observations.

All three methods give the same signs for the estimated coefficients as

the homoskedastic censored regression model, but the sizes of the coefficients

vary from model to model.  For method 1 and 2, the tests for the existence of

heteroskedasticity, using a likelihood ratio test, reject homoskedasticity.  Since

method 3 does not use maximum likelihood, no direct test can be done for

heteroskedasticity.  The advantage of method 3 is that it automatically deals



81

with the unknown form of heteroskedasticity using semiparametric

estimation.

Although the three methods of dealing with heteroskedasticity and

non-normality seem to be legitimate alternative specifications to the standard

censored regression model, the lack of robustness of the estimated coefficients

presents a practical problem of deciding which alternative is best.  In general,

different approaches to the same type of statistical problem should give

similar results. Since this was not the case, the standard model was used to

estimate the probabilities of having accidents of different types for the hedonic

models.  The issue of alternative specifications will be left for further research.

It is quite possible that heteroskedasticity and non-normality are not the most

important misspecifications.  An implicit assumption from using the FARS

data is that the average driver's characteristics for each type of vehicle derived

from fatal accidents is representative of all drivers.  This is a big assumption,

and it would be interesting to look at drivers' characteristics in non-fatal

accidents as well as fatal accidents.  With data on all types of accidents, it

would be possible to specify a multinomial model to estimate the probabilities

of different types of accidents in the same model.  Issues of heteroskedasticity

and non-normality could still be considered, but they are not likely to be the

most important way to improve the standard model in this application.
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Appendix C: Scatter Plots of Injury Rate vs. Mortality Rate

Figure A4.1: Scatter Plot of Raw Injury vs. Adjusted Mortality Rate

Figure A4.2: Scatter Plot of Adjusted Injury vs. Adjusted Mortality Rate
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Figure A4.3: Scatter Plot of Raw Injury vs. Raw Mortality Rate

y = 112.27x + 77.254
R2 = 0.1234
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